Overview of European policies and technologies for bio energy development and greenhouses gas mitigation

Sven G. Sommer University of Aarhus
Institute of Agricultural Engineering
and
Henrik Wenzel, University of Southern Denmark,
Faculty of Engineering,
EU Policy 2007

- Increase security of supply
- Ensuring the competitiveness of European economies and the availability of affordable energy
- Promoting environmental sustainability and combating climate change
EU bio-energy policy

Support
• Support co production of fuels
• Heat and power
• Integrated bio-refineries (Use of all products)

Tools for support
• Through regulations
• Market based support
 – Biogas
 – Energy price 0.08€/Wh in Denmark
 – Energy price 0.15 €/Wh in Germany for small plants.
 – Special EU – aid to energy crops: 45€ per ha
EU - Research programmes

• Funding (not including demonstration) 200 M€
• Bio-fuels for transport 34%
• Bio-refineries 18%
• Gasification and H₂ production 23%
• Bio-residues and energy crops 5%
• Incineration 10%
• Others 10%
Biomass and energy conversion

- Oil seed rape
- Starch crops

1st generation bio-energy
- Bio-diesel
- Bio-ethanol

2nd generation bio-energy
- Bio-ethanol

Agricultural Waste
- Ligno-cellulose materials

Incineration
- Power
- Heat
Bioenergy potential in Europe

Potential bioenergy

Energy crops

Year
2010 2020 2030

Bioenergy potential, MtOE

0 50 100 150 200 250 300

Organic waste

Forestry

Biomass from Forest

Year
2010 2020 2030

Bioenergy potential, MtOE

0 5 10 15 20 25

Energy crops

Bioenergy potential, MtOE

Year
2010 2020 2030

Oil crops
Crop - ethanol
Crop - ligno cellulose ethanol
Crop - biogas
Perennial - grass, forestry

Organic waste

Year
2010 2020 2030

Solid agricultural residues
Animal slurry
Wood processing residues
Municipal solid waste
Other wastes

Wiesental et al. 2006
EU - Biomass for energy production

• Seven out of 25 countries provide about 80% of the land available for energy crops

Land available for bio energy crops, 1000 ha

Wiesental et al. 2006
Biogas production

Methane production, landfill & anaerobic digestion

50% of landfill methane is produced in UK
Manure treatment concepts
Limited amount Organic waste with digestible DM

Organic waste

Biogas

Solid-liquid separation

Solid

Liquid

Solid-liquid separation

faeces

slurry

urine
Ethanol production from plant residues

IBUS concept

From Charles Nielsen
Ethanol from wheat straw

- Soaking process
- Opening of lignocelluloses by heating to cellulose and hemicelluloses
- Liquification: Enzymes transform cellulose/hemicelluloses to glucose or xylose
- Ethanol production from glucose or xylose by yeast (GMO bacteria)
- Distillation
- Recycling of residual biomass for heat and power, feed – biogas production (Maxifuel)

- Transformation of 90% of cellulose and 75% hemicelluloses
- 0.49-0.5g ethanol pr g glucose or xylose (0.42 g today)
- Conversion rate is 40% (MJ ethanol per MJ biomass input).
Cost for producing ethanol using straw compared to using grain

From Lange L.
Novozymes
Incineration of animal manure

- **Tax:** Incineration of fibre fraction of separated manure or chicken manure is in Denmark not economical sustainable due to taxation.

- **No tax:** Incineration of the solid fraction from separation of anaerobic treated manure, UK

- **Dry matter content** is the challenge for incineration or thermal gasification.
Environment friendly technologies and energy production

Ammonia scrubbing

Increase DM

Ammonium fertilizer

Gas Power/Heat

Thermic gasification or incineration

Ash rich in P and K
Climate and bio-energy example
Biogas & GHG reduction

- Natural gas substitution: 2.3 mill. ton CO2 or 3% of the total CO2 emission

- Coal energy substitution: 2.9 mill ton CO2 or 4% of the total CO2 emission
Assessment of effect on environment

Copied from presentation of
Henrik Wenzel wenzel@ipl.dtu.dk

The same amount of biomass as input to facilitate either transport (1 mile) through ethanol production or heat & power through coal substitution.
Conclusion

Biomass for energy production shall contribute significantly to production of environmental technologies.

It is realised that

- Biomass for power generation – best for environment
- Biomass for heating is cheapest (District heating)

But bio fuels is in focus due to the urgent need for transport energy?

- The argument is that (1) biofuels Is used in a transition phase until other energy forms is available & (2) biofuel can be used in existing engines
- **BUT** the biomass resource base is limited and use for ethanol will happen at the expense of use for heat & Power. Therefore power and heat generation using the biomass is the better alternative - substitutingt fossil fuels (oil and gas) that can then be used in the transport sector.

The bio fuels in consideration

- Ethanol
- RME (Oil seed rape oil-methyl ester - ‘bio diesel’)
Kyoto – 1997
Kyoto agreement

Rio – 1992
Climate Convention

Copenhagen – December 2009
New GHG reduction targets?

Source Hadley centre